

GIET POLYTECHNIC

LECTURE NOTES

ON

DATASTRUCTURE

Compiledby

Rajlaxmi Sahoo

Department of Computer Science and Engg.

CONTENTS

S.No ChapterName Page No

1 INTRODUCTION 1-7

3 ARRAYS 10-17

4 STACKS&QUEUES 18-32

5 LINKEDLIST 33-40

6 TREE 41-54

7 GRAPHS 55-60

8 SORTINGSEARCHING&MERGING 61-70

9 FILE ORGANIZATION 71-76

 1

Chapter-1

INTRODUCTION

Data is the basic entity or fact that is used in calculation or manipulation process. There are

two types of data such as numerical and alphanumerical data. Integer and floating-point

numbers are of numerical data type and strings are of alphanumeric data type. Data may be

single or a set of values and it is to be organized in a particular fashion. This organization

or structuring of data will have profound impact on the efficiency of the program.

DATA:

Data is value or set of values which does not give any meaning. It is generally a raw fact.

For example:

1.34 3.Chintan

2.13/05/2008 4.12,34,43,21

ENTITY

An entity is a thing or object in the real world that is distinguishable from all other objects.

 The entity has a set of properties or attributes and the values of some sets of these attributes

may uniquely identify an entity.

 An entity set is a collection of entities.

Example:

Entity Student

Attributes Roll

No.

Name DOB % of marks

scored

Values 123 Ram 01/01/1

980

79%

All students of a particular class constitute an entity set.

INFORMATION

It can be defined as meaningful data or processed data. When the raw facts are processed, we

get a related piece of information as its output/result.

Example:

Data(01/01/1980)becomes information if entity Ram is related to Date of birth attribute

(01/01/1980) as follows:

DOB of student Ram is 01/01/1980

 2

DATATYPE

A data type is a term which refers to the kind of data that may appear in computation. Every

programming language has its own set of built-in data types.

Example:

Data Datatype

34 Numeric
Chintech String
21,43,56 Array of integers
12/05/2008 Date

In C ,the following are the basic data types are: int , long, char, float, double, void etc.

Definition:

Data Structure is a specialized format for storing data so that the data’s can be organized in

an efficient way.

Or

“Thedatastructureisthelogicalormathematicalmodelofparticularorganizationof data.”.

Or

A data structure is a mathematical or logical way of organizing data in the memory that

consider not only the items stored but also the relationship to each other and also it is

characterized by accessing functions.

Data Structure=Organizeddata+AllowedOperations.

OBJECTIVES OF DATA STRUCTURE

 To identify and create useful mathematical entities and operations to determine what classes

of problems can be solved by using these entities and operations.

 To determine the representation of these abstract entities and to implement the abstract

operations on these concrete representation.

NEED OF A DATASTRUCTURE

 To understand the relationship of one data elements with the other and organize it within the

memory.

 A data structures helps to analyze the data, store it and organize it in a logical or

mathematical manner.

 Data structures allow us to achieve an important goal component reuse.

 3

CLASSIFICATION OF DATA STRUCTURE

Based on how the data items are operated ,it will classify into two broad categories.

 Primitive Data Structure
 Non-Primitive Data Structure

Primitive Data Structure: These are basic DS and the data items are operated closest to the

machine level instruction.

Example: integer, characters , strings, pointer and double.

Non-Primitive Data Structure: These are more sophisticated DS and are derived from

primitive DS. Here data items are not operated closest to machine level instruction. It

emphasize on structuring of a group of homogeneous (sametype) or heterogeneous(different

type) data items.

Linear Data Structure: In which the data items are stored in sequence order.

Example: Arrays, LinkedLists, Stacks and Queues

Non Linear Data Structure: In Non-Linear data structures, the data items are not in
sequence.
Example: Trees, Graphs.

DATASTRUCTURE OPERATIONS:

The various operations that can be performed on different data structures are described
below:

1. Creating–A data structure created from data.

2. Traversal–Processing each element in the list

3. Search– Finding the location of given element.

 4

4. Insertion –Adding a new element to the list.

5. Deletion–Removing an element from the list.

6. Sorting–Arranging the records either in ascending or descending order.

7. Merging–Combining two lists into a single list.

8. Modifying– the values of DS can be modified by replacing old values with new ones.

9. Copying– records of one file can be copied to another file.

10. Concatenating – Records of a file are appended at the end of another file.

11. Splitting– Records of big file can be splitting into smaller files.

ABSTRACT DATA TYPES

Abstract data type (ADT) is a specification of a set of data and the set of operations that can

be performed on the data.

 It is a logical description of how we view the data and the operations that are allowed

without knowing how they will be implemented.

 This means that we are concerned only with what the data is representing and not with how it

will eventually be constructed.

 An ADT is a data declaration packaged together with the operations that are meaningful on

the data type.

1. Declaration of Data

2. Declaration of Operations
Examples: Objects such as lists, sets and graphs with their operations can be called as ADT.

For the SET ADT, we might have operations such as union, intersection, and complement

etc.

Uses of ADT:

1. It helps to efficiently develop well designed program

2. Facilitates the decomposition of the complex task of developing a software system into a

number of simpler subtasks

3. Helps to reduce the number of things the programmers has to keep in mind at anytime.

4. Breaking down a complex task into a number of earlier subtasks also simplifies testing and

debugging.

 5

ALGORITHM:

An algorithm is a method of representing the step by step logical procedure for solving a

problem. It is a tool for finding the logic of a problem.

In addition every algorithm must satisfy the following criteria:

 Input: There are zero or more quantities which are externally supplied. i.e. each

algorithm must take zero, one or more quantities as input data.

 Output: At least one quantity is produced .i.e. produce one or more output values.

 Definiteness: Each instruction or step of an algorithm must be clear and unambiguous.

 Finiteness: An algorithm must terminate in a finite number of steps.

 Effectiveness: Each step must be effective, in the sense that it should be primitive(easily

convertible to program).

ALGORITHM COMPLEXITY:

 After designing an algorithm, we have to be checking its correctness. This is done by

analyzing the algorithm. The algorithm can be analyzed by tracing all step-by-step

instructions, reading the algorithm for logical correctness, and testing it on some data

using mathematical techniques to prove it correct.

 There may be more than one algorithm to solve a problem. The choice of a

particular algorithm depends on its complexity.

 Complexity refers to the rate at which the required storage or consumed time grows as
a function of the problem size.

 It is the performance evaluation or analysis/ measurement of an algorithm is obtained by

totaling the number of occurrences of each operation when running the algorithm.

 Two important ways to characterize the effectiveness of an algorithm are its

space complexity and time complexity.

 Space Complexity

 Time Complexity

SPACECOMPLEXITY:

 Space complexity of an algorithm or program is the amount of memory it needs to run to

completion.

 We can measure the space by finding out that how much memory will be consumed by

the instructions and by the variables used.

Example:

Suppose w want to add two integer numbers .To solve this problem we have
following two algorithms:

Algorithm1: Algorithm2:

Step1- Input A. Step1- Input A.

Step2- Input B. Step2- Input B.

Step3-Set C:= A+ B. Step3-Write: ‘Sum is‘, A+B.

 6

Step4-Write: ‘Sum is‘, C.

Step 4- Exit. Step 5- Exit.

Both algorithms will produce the same result. But first takes 6 bytes and second takes 4

bytes (2bytesforeachinteger).And first has more instructions than the second one. So we

will choose the second one as it takes less space than the first one. (Space Complexity).

Suppose 1 second is required to execute one instruction. So the first algorithm will take 4

seconds and the second algorithm will take 3 seconds for execution. So we will choose the

second one as it will take less time. (Time Complexity).

TimeComplexity
➢ The time complexity of a program /algorithm is the amount of computer time that is need

to run to completion.
➢ But the calculation of exact amount of time required by the algorithm is very difficult. So

we can estimate the time and to estimate the time we use some asymptotic notation,
which are described below. Let the no. of steps of an algorithm is measured by the function
f(n).

1. Big ‘O’ notation

The given function f(n) can be expressed by big ‘O’ notation as follows .f(n)= O(g(n)) if and
only if there exist the +ve const. ‘C’ and no such that f(n) ≤ C * g(n) for all n ≥ no.

2. Omega(Ω)notation

The function f(n)=Ω(g(n)) if and only if there exist the +ve const C and no such that f(n)≥C
* g(n) for all n≥ no

3. Theta(θ)notation:
The function f(n)=θ(g(n)) if and only if there exist a +ve const‘C1’,‘C2 ’ and no such that C1
* g(n)≤f(n) ≤C2*g(n)

Big ‘O’ is the upper bound Ω is the lower bound θ is the avg bound which can be estimated
in time complexity.

SpaceComplexity
The space complexity is the program that the amount of memory that is needed to run to

completion .The space complexity need by a program have two different Components.

1. Fixed space requirement: -The components refer to space requirement that do not
depend upon the number and size of the programs input and output.

 7

2. Variable space requirement: - This component consist of the space needed by structure
variable whose size depends on the particular instruction, of the program being solved.

TIME-SPACETRADE-OFF:

 There may be more than one approach (or algorithm) to solve a problem.

 The best algorithm (or program) to solve a given problem is one that requires less space

in memory and takes less time to complete its execution.

 But in practice ,It is not always possible to achieve both of these objectives.

 One algorithm may require more space but less time to complete its execution while the

other algorithm requires less time space but takes more time to complete its execution.

 Thus,we may have to sacrifice one at the cost of the other.
 If the space is our constraint, then we have to choose a program that requires less space at

the cost of more execution time.

 On the other hand, if time is ou constraint such as in real time system, we have to choose a

program that takes less time to complete its execution at the cost of more space.

 8

Chapter3ARRAYS

An array is a finite, ordered and collection of homogeneous data elements.

finite – It contain limited no. of element.

ordered–All the elements are stored one by one in a contiguous memory location.

homogeneous -All the elements of an array of same type.

The elements of an array are accessed by means of an index or subscript.

That’s why array is called subscripted variable.

LINEARARRAY

If one subscript is required to refer all the elements in an array then this is called Linear array or

one-dimensional array.

Representation of Linear Array in memory

Let a is the name of an integer array.

It contains a sequence of memory location.

Let b=address of the 1st element in the arrayi.e. base address If w=wordsize then

address of any element in array can be obtained as address of

(a[i]) = b + i x w i=index no.addressof

a[3] = b + i x w

=b+3x2=b+6

 9

Operation on Array

1. TRAVERSAL

This operation is used to visit all the elements of the array.

Voidtraverse(inta[],intn)

{

inti;

for(i=0;i<n;i++)

Printf(“%d”,a[i]);

}

2. INSERTION

Inserting the array at the end position can be done easily, but to insert at the middle of the

array we have to move the element to create a vacant position to insert the new element.

int insert (int a[], int n, int pos, int ele)

{

inti;

for(i=n-1;i>=pos-1;i--)

{

a[i+1]=a[i];

}

a[pos-1]=ele; n++;

return(n);

}

3. DELETION

Deleting an element at the end of the array can be done easily by only decreasing the array size

by 1.

But deleting an element at the middle of the array require that each subsequent element from the

position where to be deleted should be moved to fill up the array.

intdelete(int a[],int n,int pos)

{

 10

for (i= pos-1;i<n-1;i++)

{

a[i]=a[i+1];

} n--;

return(0);

}

Memory Representation of 2DArray

- The array having two subscript is called as 2Darray.

- In 2Darray the elements are stored in contiguous memory location as in single

dimensional array.

- There are 2 ways of storing any matrix in memory.

1. Row-major order

2. Column-major order

Row-major Order

In row-major order the row elements are focused first that means elements of matrix are

stored on a row-by-row basis.

LogicalRepresentationofarraya[3][3]

Row major order representation of a[3][3]

Storage Representation in Row-major order

 11

Column-major Order

In column major order the column elements are focused first that means elements of the matrix

are stored in column-by-column basis.

Ex:Column major order representation of a[3][3]

Storage Representation of matrix inColumn-majorOrder

 12

Address Calculation of Matrix in Memory

Row-major order

Suppose a[u1][u2]is a 2Darray

u1=no.of row

 u2 = no. of column

Address of a[i][j]=b+(i * u2+ j)*w

Column-major order

Address of a[i][j]= b+ (j * u1+i)* w

Pointers

The pointer in C language is a variable which stores the address of another variable. This

variable can be of type int, char, array, function, or any other pointer.

Syntax:datatype*var_name;

Example:

1. int*a;//pointer to int

2. char*c;//pointer to char

Pointer Example

An example of using pointers to print the address and value is given below.

 13

In the above figure, pointer variable stores the address of number variable, i.e.,fff4. The value of

number variable is 50. But the address of pointer variable p is aaa3.

By the help of*(indirection operator), we can print the value of pointer variable p.

Let's see the pointer example as explained for the above figure.

#include<stdio.h>

int main(){

int number=50;

int *p;

p=&number;//stores the address of number variable

printf("Address of p variable is %x \n", p);

printf("Value of p variable is %d \n",*p);

return0;

}

Output

Address of number variable isfff4

Address of p variable is fff4

Value of p variable is 50

 14

Chapter-4

STACKS&QUEUES

 Stack is a linear data structure in which an element may be inserted or deleted at one end

called TOP of the stack.

 That means the elements are removed from a stack in the reverse order of that in which

they were inserted into the stack.

 Stack is called LIFO(Last-in-first-Out) Str.i.e. the item just inserted is deleted first.

 There are 2 basic operations associated with stack

1. Push:-This operation isused to insert an element into stack.

2. Pop:-This operation isused to delete an element from stack

Working of Stack Data structure

Condition also arise:

1. Overflow:-When a stack is full and we are attempting a push operation, overflow

condition arises.

2. Underflow:-When a stack is empty ,and we are attempting a pop operation then underflow

condition arises.

Representation of Stack in memory

A stack may be represented in the memory in two ways:

1. Using one dimensional array i.e.Array representation of Stack.

2. Using single linked list i.e.Linked list representation of stack.

 15

Array Representation of Stack :

To implement a stack in memory, we need a pointer variable called TOP that hold the index of

the top element of the stack, a linear array to hold the elements of the stack and a variable

MAXSTK which contain the size of the stack.

MAXSTK=5

Linked List Representation of Stack:

 Array representation of Stack is very easy and convenient but it allows only to

represent fixed sized stack.

 But in several application size of the stack may very during program execution, at

that cases we represent a stack using linked list.

 Single linkedlist is sufficient to represent any Stack.

 Here the ‘info’ field for the item and

‘next’ field is used to print the next item.

StackPushandPopOperations StackPushandPopOperations StackPushandPopOperations StackPushandPopOperations StackPushandPopOperations StackPushandPopOperations

INSERTION IN STACK (PUSH OPERATION)

This operation is used to insert an element in stack at the TOP of the stack.

Algorithm :-

PUSH(STACK,TOP,MAXSTK, ITEM)

This procedure pushes an item into stack.

1. If TOP =0 then print Underflow and Return.

2. Set ITEM=STACK[TOP] (Assigns TOP element to ITEM)

3. Set TOP=TOP-1 (Decreases TOP by1)

4. Return

(Where Stack=Stack is a list of linear structure

TOP=pointer variable which contain the location of Top element of the stack

MAXSTK= variable which contain size of the stack

ITEM= Item to be inserted)

DELETION IN STACK (POP OPERATION)

This operation is used to delete an element from stack.

Algorithm :-

POP(STACK,TOP,ITEM)

This procedure deletes the top element of STACK and assigns it to the variable ITEM.

1. If TOP =0 then print Underflow and Return.

2. Set ITEM=STACK[TOP] (Assigns TOP element to ITEM)

3. Set TOP=TOP-1(Decreases TOP by1)

4. Return

 DataStructure 20 SwagatikaDalai

 21

Stack Push and Pop Operations

ARITHMETICEXPRESSION

There are 3 notation to represent an arithmetic expression.

1. Infix notation

2. Prefix notation

3. Postfix notation

1. INFIX NOTATION

• The convention always of writing an expression is called as

infix. Ex:A+B, C+D, E*F, G/M etc.

• Here the notation is

<Operand><Operator><Operand>

• This is called infix because the operators come in between the operands.

2. PREFIX NOTATION

• This notation is also known as “POLISH NOTATION”

• Here the notation is

<Operator><Operand><Operand>

• Ex:+AB,-CD,*EF, /GH

 22

3. POSTFIX NOTATION

• This notation is called as post fix or suffix notation where operator is suffixed

by operand.

• Here the notation is

<Operand><Operand><Operator>

• Ex:AB+, CD-,EF*,GH/

• This notation is also known as “REVERSEPOLISH NOTATION.”

CONVERSIONFROM INFIXTOPOSTFIXEXPRESSION

Algorithm:

POLISH(Q,P)

Q is an arithmetic expression written in infix notation. This algorithm finds the equivalent

postfix expression P.

1. Push“(” onto stack and add“)”to the end of Q.

2. Scan Q from left to right and repeat steps3to6 for each element of Q until the STACK is

empty.

3. If an operand is encountered, add it top.

4. If a left parenthesis is encountered, push it onto stack.

5. If an operator X is encountered,then:

a) Repeatedly POP from STACK and add to P each operator (on the top of the

STACK) which has the same precedence as or higher precedence than the

operator X .

b) Add the operator X to STACK.

6. If a right parenthesis is encountered then:

a) Repeatedly POP from STACK and add to P each operator(on the top of the

STACK) until a left parenthesis is encountered.

b) Remove the leftparenthesis.

[End of if str.]

[EndofStep-2Loop]

7. Exit

 23

Ex:A+(B*C–(D/E^F)*G)*H)

SymbolScanned STACK EXPRESSION(POSTFIX)
 (

A (A

+ (+ A

((+(A

B (+(AB

* (+(* AB

C (+(* ABC

- (+(- ABC*

C (+(-(ABC*

D (+(-(ABC*D

/ (+(-(/ ABC*D

E (+(-(/ ABC*DE

^ (+(-(/^ ABC*DE

F (+(-(/^ ABC*DEF

) (+(- ABC*DEF^/

* (+(-* ABC*DEF^/

G (+(-* ABC*DEF^/G

) (+ ABC*DEF^/G*-

* (+* ABC*DEF^/G*-

H (+* ABC*DEF^/G*-H

) ABC*DEF^/G*-H*+

Equivalent Postfix Expression: ABC*DEF^/G*-H*+

EVALUATION OF POSTFIX EXPRESSION

Algorithm:

This algorithm finds the value of an arithmetic expression P written in Postfix notation.

1. Add a right parenthesis“) ”at the end of P.

2. Scan P from left to right and repeat steps 3 and 4 for each element of P until the “) ” is

encountered.

3. If an operand is encountered, put it on STACK.

4. If an operator X is encountered then:

a) Remove the two top element of STACK, where A is top element and B is the

next-to-top element.

 24

b) Evaluate BXA.

c) Place the result of(b) on STACK.

[End of if str.]

5. Set value equal to the top element on STACK.

6. Exit

Ex: 5, 6,2,+, *, 12,4, /,-)

SymbolScanned STACK

5 5

6 5,6

2 5,6,2

+ 5,8

* 40

12 40,12

4 40,12,4

/ 40,3

- 37(Result)

)

APPLICATIONSOFSTACK:

 Recursion process uses stack for its implementation.

 Quick sort uses stack for sorting the elements.

 Evaluation of arithmetic expression can be done by using STACK.

 Conversion from infix to postfix expression

 Evaluation of postfix expression

 Conversion from infix to prefix expression

 Evaluation of prefix expression.

 Backtracking

 Keep track of post-visited(history of a web-browsing)

IMPLEMENTATION OF RECURSION

A function is said to be Recursive function if it call itself or it call a function such that the

function call back the original function.

This concept is called as Recursion.

The Recursive function has two properties.

 25

I. The function should have a base condition.

II. The function should come closer towards the base condition.

The following is one of the example of recursive function which is described below.

Factorial of a no.using Recursion

The factorial of a no. ‘n’ is the product of positive integers from1to n.

n ! = 1 X 2 X 3 X X (n-) X n

Physically provedn!= nX (n-1)!

The factorial function can be defined as follows.

I. If n=0then n!=1

II. If n>0then n!=n.(n-1)!

The factorial algorithm is given below factorial(fact,n)

This procedure calculates n! and returns the value in the variable fact.

1. If n=0 then fact=1and Return.

2. Call factorial(fact,n-1)

3. Set fact= fact*n

4. Return

 26

Ex: Calculate the factorial of 4.

4 ! = 4 x 3 !

3!= 3x2!

1!=1x1=1

2!=2x1=2

3!=3x2=6

4!=4x6=24

2!=2x1!

1!=1x0!

0!=1

 27

QUEUE

• Queue is a linear data structure or sequential data structure where insertion take place at

one end and deletion take place at the other end.

• The insertion end of Queue is called rear end and deletion end is called front end.

• Queue is based on (FIFO) First in First Out Concept that means the node i.e. added first

is processed first.

• Here Enqueue is Insert Operation.

• Dequeue is nothing but Delete Operation.

Representation Of Queue In Memory

 The Queue is represented by a Lineararray “Q” and two pointer variable FRONT and

REAR.

 FRONT gives the location of element to be deleted and REAR gives the location

after which the element will be inserted.

 The deletion will be done by

setting Front = Front + 1

 The insertion will be done by

setting Rear = Rear + 1

INSERTIONINQUEUE(Enqueue)

Algorithm:

Insert(Q, ITEM,Front,Rear)

This procedure insert ITEM in queue Q.

1. If Front=1andRear=Max

Print ‘Overflow’ and Exit.

2. If front=NULL then

Front = 1

Rear=1

else

 28

Rear =Rear+1

3. Q[Rear]= ITEM

4. Exit

DELETIONIN QUEUE(Dequeue)

Algorithm:Delete(Q,ITEM, FRONT, REAR)

This procedure remove element from queue Q.

1. If Front=Rear=NULL

Print ‘Underflow’ and Exit.

2. ITEM=Q(FRONT)

3. If Front=Rear

 Front =NULL

 Rear = NULL

 else

 Front =Front+1

4. Exit

 29

EnqueueandDequeue Operations

 30

CIRCULARQUEUE

 Let we have a queue that contain ‘n’ elements in which Q[1] comes after Q[n].

 When this technique is used to construct a queue then the queue is called circular queue.

 In Circular queue when REAR is ‘n’ and any element is inserted then REAR will set as 1.

 Similarly when the front is n and any element is deleted then front will be 1.

Circular Queue representation

INSERTION ALGORITHM OF CIRCULARQUEUE

Insert(Q,N,FRONT, REAR, ITEM)

This procedure inserts an element ITEM into the circular queue Q.

1. If Front=1and Rear=N

then print ‘Overflow’ and Exit.

2. If front=NULL

Then Front=1andRear=1 else

if Rear = N then

Set Rear =1

else

set Rear=Rear+1

(End of if Str.)

3. Set Q[Rear]=ITEM(Insert a new element)

4. Exit

 31

DELETION ALGORITHM OF CIRCULARQUEUE

Delete(Q, N,ITEM,FRONT,REAR)

This procedure delete an element from a circular queue.

1. If Front=NULL then write Underflow and Return.

2. Set ITEM=Q[FRONT]

3. If Front= Rear

Then Front=NULL and Rear=NULL Else

if Front = N then

Set Front=1

else

Front= Front+1

[End of if str.]

4. Return

.

 32

Chapter-5

LINKEDLIST

Linked List is a collection of data elements called as nodes.

The node has 2 parts

 Info is the data part

 Next i.e. the address part that means it points to the next node.

If linked list adjacency between the elements are maintained by means of links or pointers.

A link or pointer actually the address of the next node.

The last node of the list contain‘\0’NULLwhichshows the end of the list.

The linked list contain another pointer variable ‘Start’ which contain the address the first node.

Linked List is of 4 types

 Single Linked List

 Double Linked List

 Circular Linked List

 Header Linked List

Representation of Linked List in Memory
 Linked List can be represented in memory by means 2 lineararrays i.e.Data or info and Link or

address.

 They are designed such that info[K] contains the Kth element and Link[K] contains the next pointer

field i.e. the address of the Kth element in the list.

 The end of the List is indicated by NULL pointer i.e. the pointer field of the last element will be

NULL or Zero

.

 33

Start=4

info[4]=N Link[4]=3

info[3]=T Link[3]=6
info[6]=E Link[6]=2
info [2] = F Link[2]=0i.e.the null value

So the list has ended .

Representation of a node in a LinkedList

Struct Link

{
int data;

Struct Link *add;

};

SINGLE LINKEDLIST
A Single Linked List is also called as one-way list. It is a linear collection of data elements called nodes, where

the linear order is given by means of pointers.

Each node is divided into 2 parts.
I. Information

II. Pointer to nextnode.

OPERATION ON SINGLELINKEDLIST

1. Traversal
Algorithm:
Display(Start)This algorithm traverse the list starting from the1st node to the end of the list.
Step-1 : “Start” holds the address of the first node.

Step-2 : Set Ptr = Start [Initializes pointer Ptr]
Step-3: Repeat Step 4to5, WhilePtr ≠NULL
Step-4: Process info[Ptr] [apply Process to info(Ptr)]

Step-5:Set Ptr=next[Ptr] [movePtr to next node]

[End of loop]

Step-6:Exit

 34

2. Insertion

The insertion operation is used to add an element in an existing Linked List. There is various positions where

node can be inserted.

 Insert at the beginning
 Insert at end

 Insert at specific location.

Insert At The Beginning

Suppose the new node whose information field contains 20 is inserted as the first node.

Algorithm:

This algorithm is used to insert a node at the beginning of the Linked List. Start holds the address of the first

node.

Step-1:Create a new node named as P.
Step-2:If P ==NULL then print“Outofmemoryspace”andexit.

Step-3 : Set info [P] = 𝑥 (copies a new data into a new node)
Step-4:Set next[P]=Start(new node now points to original first node)
Step-5 : Set Start = P

Step-6:Exit

Insert At The End

To insert a node at the end of the list, we need to traverse the List and advance the pointer until the last

node is reached.

Suppose the new node whose information field contains 77 is inserted at the last node.

 35

Algorithm:

This algorithm is used to insert a node at the end of the linked list. ‘Start’ holds the address of the first
node.

Step-1 : Create a new node named as P.

Step-2:If P =NULL then print“Out of memory space”andExit.

Step-3 : Set info [P] = 𝑥 (copies a new data into a new node)

Step-4:Set next[P]=NULL

Step-5 : Set Ptr = Start

Step-6: Repeat Step-7whilePtr≠NULL

Step-7 : Set temp = Ptr
Ptr=next[Ptr](Endofstep-6loop)

Step-8 : Set next [temp] = P

Step-9:Exit

Insert At Any Specific Location

To insert a new node at any specific location we scan the List from the beginning and move up to the desired

node where we want to insert a new node.

In the below fig. Whose information field contain 88 is inserted at 3rd location.

Algorithm:

‘Start’ holds the address ofthe1stnode.

Step-1 : Set Ptr = Start

Step-2:Create a new node named as P.

Step-3 : If P = NULL then write‘Out of memory’ and Exit.

Step-4:Set info[P]= 𝑥 (copies a newdata into a newnode)

Step-5 : Set next [P] = NULL

Step-6:Read Loc

Step-7:Seti= 1

Step-8:Repeat steps 9to11 while Ptr ≠NULL and i<Loc

Step-9 : Set temp = Ptr.

Step-10:Set Ptr=next [Ptr]

Step-11:Set i=i+1

[End of step-7 loop]

Step-12:Set next[temp]=P

Step-13 : Set next [P] = Ptr

Step-14 : Exit

3. Deletion

The deletion operations used to delete an element from a single linked list. There are various
position where node can be deleted.

Deletethe1stNode

Algorithm:

Start holds the address of the 1stnode.

Step-1 : Set temp = Start

Step-2:If Start=NULL then write‘UNDERFLOW’&Exit.

Step-3 : Set Start = next[Start]

Step-4:Free the space associated with temp.

Step-5 : Exit

Delete the last node

Algorithm:

Start holds the address of the 1st node.

Step-1:Set Ptr=Start

Step-2: Set temp=Start
Step-3: If Ptr=NULL then write‘UNDERFLOW’&Exit.

Step-4:Repeat Step-5 and 6 While next[Ptr] ≠ NULL

 Step-5 : Set temp = Ptr

Step-6:SetPtr=next[Ptr](Endofstep4loop) Step-

7 : Set next[temp] = NULL

Step-8:Free the space associated with Ptr.

Step-9 : Exit

Delete the node at any specific location

Algorithm:

Start holds the address of the1stnode.

Step-1 : Set Ptr = Start

Step-2:Set temp=Start

Step-3:If Ptr=NULL thenwrite‘UNDERFLOW’andExit.

Step-4 : Set i = 1

Step-5:Read Loc

Step-6:Repeat Step-7to9 whilePtr ≠NULLandi<Loc

 Step-7 : Set temp = Ptr

Step-8: Set Ptr= next[Ptr]

Step-9 : Set i = i+1

(EndofStep6loop)

Step-10: Set next[temp]= next[Ptr]

Step-11 :Free the space associated withPtr.

Step-12 : Exit

4. SEARCHING

Searching means finding an element from a given list.

Algorithm:

Start holds the address of the1stnode.

Step-1 : Set Ptr = Start

Step-2 : Set Loc = 1

Step-3:Read element

Step-4:Repeat Step-5and7 WhilePtr≠NULL

Step-5:If element=info[Ptr] then Write‘Elementfound at position’, Loc and Exit.

Step-6 : Set Loc = Loc+1

Step-7:Set Ptr=next[Ptr]

(End of step 4 loop)

Step-8:Write‘ Element not found’

Step-9 : Exit

Headerlinkedlist

Header Linked List is a modified version of Singly LinkedList.

In Header linked list, we have a special node, the Header Node present at the beginning of the

linked list.

The Header Node is an extra node at the front of the list storing meaningful information about

the list.

It does not represent any items of the list like other nodes rather than the information present in

the Header node is global for all nodes such as Count of Nodes in a List, Maximum among all

Items, Minimum value among all Items etc.

This gives useful information about the Linkedlist.

This data part of this header node is generally used to hold any global information about the

entire linked list. The next part of the header node points to the first node in the list.

A header linkedlist can be divided into two types:

i) Grounded header linked list that stores NULL in the last node’s next field.

ii) Circular header linked list that stores the address of the header node in the next part of the

last node of the list.

GarbageCollection

The operating system of a computer may periodically collect all the deleted space onto the free

storage list. Any technique which does these collections is called garbage collection.

When we delete a particular note from an existing linked list or delete the linked list the space

occupied by it must be given back to the free pool.So that the memory can be the used by some

other program that needs memory space.

Chapter-6

TREE

A tree is non-linear and a hierarchical data structure consisting of a collection of nodes such that

each node of the tree stores a value.

Application:

The following are the applications of trees:

 Storing naturally hierarchical data: Trees are used to store the data in the

hierarchical structure. For example, the file system.

 Organize data: It is used to organize data for efficient insertion,deletionand searching.

 Trie:It is a special kind of tree that is used to store the dictionary.It is a fast and

efficient way for dynamic spell checking.

 Heap:It is also a tree data structure implemented using arrays.It is used

toimplement priority queues.

 B-TreeandB+Tree:B-Tree and B+Tree are the tree data structures used to

implement indexing in databases.

 Routingtable: The tree data structure is also used to store the data in routing tables in

the routers.

BasicTreeTerminologies

1. Node

A node is an entity that contains a key or value .

The last nodes of each path are called leaf nodes or external nodes that do not contain a

link/pointer to child nodes.

The node having at least a child node is called an internal node.

2. Root Node: The topmost node of a tree or the node which does not have any parent node is

called the root node. {1} is the root node of the tree. A non-empty tree must contain exactly

one root node .

3. Parent Node: The node which is a predecessor of a node is called the parent node of

that node. {2} is the parent node of {6, 7}.

4. Child Node:The node which is the immediate successor of a node is called the child node of

that node. Examples: {6, 7} are the child nodes of {2}.

5. Degreeof a Node: The total count of sub trees attached to that node is called the degree of the

node. The degree of a leaf node must be 0. The degree of a tree is the degree of its root. The

degree of thenode{3} is3. Lea fNode or External Node:The nodes which do not have any child

nodes are called leaf nodes. {6, 14, 8, 9, 15, 16, 4,11, 12, 17, 18, 19} are the leaf nodes of the

tree

6. Sibling:Children of the same parent node are called siblings.{8,9,10}are called siblings.

7. Depth of anode:The count of edges from the root to the node. Depth of node{14}is 3.

8. Height of a node:The number of edges on the longest path from that node to a leaf. Height of

node {3} is 2.

9. Height of a tree: The height of a tree is the height of the root node i.e the count of edges

from the root to the deepest node. The height of the above tree is 3.

10. Level of a node: The count of edges on the path from the root node to that node.The root

node has level 0.

11. Internal node: A node with atleast one child is called Internal Node.

12. Ancestor of a Node: Any predecessor nodes on the path of the root to that node are

called Ancestors of that node. The node 1 is called ancestor of node7 as there is successive

parent present from node 7 to node 1. {1, 2} are the parent nodes of the node {7}

13. Descendant: Any successor node on the path from the leaf node to that node.{7,14}are the

descendants of the node. {2}.

14. Path:A sequence of edges is called as path.

BinaryTree
Each node of a binary tree consists of three items:

 Data item

 Address of left child

 Address of right child

A binary tree is a tree-type non-linear data structure with a maximum of two children for each

parent. Here, binary name itself suggests that 'two';therefore, each node can have either 0, 1or2

children.

TypesofBinary Tree

1. Full/proper/strict Binarytree

The full binary ree is also known as a strict binary tree.The tree can only be considered as the

full binary tree if each node must contain either 0or2 children. The full binary tree can also be

defined as the tree in which each node must contain 2 children except the leaf nodes.

2. Complete Binary tree

The complete binary tree is a tree in which all the nodes are completely filled except the last

level. In the last level,all the nodes must be as left as possible. In a complete binarytree, the

nodes should be added from the left.

If we number the nodes of the complete binary tree from left to right level by level then the

node k has its left child at 2k position and right child at 2k+1 position.

https://www.upgrad.com/blog/data-structures-algorithm-in-python/

Binary Tree Representation in memory

A tree must represent a hierarchical relationship between parent node and child node.

Let T be a Binary Tree. There are two ways of representing T in the memory as follow

1. Sequential or Linear Representation of BinaryTree.

2. Link Representation of Binary Tree.

1. Sequential or Linear Representation of BinaryTree.

Let us consider that we have a tree T. let our tree T is a binary tree that us complete binary tree.

Then there is an efficient way of representing T in the memory called the sequential

representation or array representation of T. This representation uses only a linear array TREE as

follows:

1. The root Node N of T is stored in TREE[1].

2. If a node occupies TREE[k] then its left child is stored in TREE[2*k] and its right child is

stored into TREE [2 * k + 1].

Its sequential representation is as follow:

2. Linked Representation of Binary Tree

Consider a Binary Tree T. Twill be maintained in memory by means of a linked list

representation which uses three parallel arrays; INFO, LEFT, and RIGHT pointer

Variable ROOT as follows. In Binary Tree each node N of T will correspond to a location k such

that

1. LEFT[k] contains the location of the left child of nodeN.

2. INFO[k]contains the data at the node N.

3. RIGHT[k]contains the location of right child of node N.

Representation of a node:

In this

Representation of binary tree root will contain the location of the root R of T. If anyone of the

subtree is empty, then the corresponding pointer will contain the null value if the tree T itself is

empty, the ROOT will contain the null value.

Example

Consider the binarytreeTinthe figure. A schematic diagram of the linked list representation of T

appears in the following figure. Observe that each node is pictured with its three fields, and that

the empty subtree is pictured by using x for null entries.

BinaryTree

Linked Representation of the Binary Tree:

BinaryTree Traversal

Traversal is a process to visit all the nodes of a tree and may print their values too.Because,all

nodes are connected via edges (links) we always start from the root (head) node. That is, we

cannot randomly access a node in a tree.

There are three ways which we use to traverse a tree−

 In-order Traversal

 Pre-order Traversal

 Post-order Traversal

1. In-order Traversal

This is also known asymmetric order.

This traversal is referred as LNR.

Algorithm-

1. First, visit all the nodes in the left subtree

2. Then the root node

3. Visit all the nodes in the right subtree

Left→ Root→Right

Application-

In order traversal is used to get infix expression of an expression tree.

2. PreorderTraversal-

This is also known as depth fistorder.

This traversal is referred as NLR.

Algorithm-

1. Visit the root

2. Traverse the left subtree i.e. call Preorder(leftsubtree)

3. Traverse the right subtreei.e. call Preorder(right subtree)

Root → Left → Right

Applications-

Preorder traversal is used to get prefix expression of an expression tree.Preorder traversal is used

to create a copy of the tree.

3. Postorder Traversal-

This traversal is referred as LRN.

Algorithm-

1. Traverse the left subtreei.e. call Postorder(leftsubtree)

2. Traverse the right subtreei.e. call Postorder(rightsubtree)

3. Visit the root

Left→Right→Root

Applications-

 Post order traversal is used to get postfix expression of an expression tree.

 Postorder traversal is used to delete the tree.

 This is because it deletes the children first and then it deletes the parent.

BinarySearchtree

A binary tree T is termed as Binary Search Tree if each noden of T satisfies thefollowing

property.

 The value of n is greater than the value of all nodes in its left subtree.

 The value of n is less than the value of all nodes in its right subtree.

Advantages of Binarysearchtree

o Searching an element in the Binary search tree is easy as we always have a hint

that which subtree has the desired element.

o As compared to array and linked lists, insertion and deletion operations are faster inBST.

Example of creating a binary search tree

Suppose the data elements are-45,15,79,90,10,55,12,20,50

o First,we have to insert 45 into the tree as the root of the tree.

o Then, read the next element; if it is smaller than the root node, insert it as the root of

the left subtree, and move to the next element.

o Otherwise, if the element is larger than the root node, then insert it as the root of the

right subtree.

Now, let's see the process of creating the Binary search tree using the given data element. The

process of creating the BST is shown below -

Step1-Insert 45.

Step 2-Insert15.

As15is smaller than 45,so insert it as the root node of the leftsubtree

Step3-Insert 79.

As 79 is greater than 45,so insert it as the root node of the right subtree.

Step4-Insert 90.

90 is greater than 45and79, so it will be inserted as the right subtree of 79.

Step5-Insert 10.

10 is smaller than 45 and15, so it will be inserted as a leftsubtree of 15.

Step6-Insert 55.

55 is larger than 45andsmaller than79, so it will be inserted as the left subtree of 79.

Step7-Insert 12.

12 is smaller than45and15but greater than10,so it will be inserted as the right subtree of 10.

Step8-Insert 20.

20 is smaller than 45 but greater than 15, so it will be inserted as the right subtree of 15.

Step9-Insert 50.

50 is greater than 45 but smaller than 79 and 55. So ,it will be inserted as a left subtree of 55.

Now, the creation of binary search tree is completed.

Searching in Binary search tree

Searching means to find or locate a specific element or node in a data structure. In Binary search

tree, searching a node is easy because elements in BST are stored in a specific order. The steps of

searching a node in Binary Search tree are listed as follows –

1. First, compare the element to be searched with the root element of the tree.

2. If root is matched with the target element, then return the node's location.

3. If it is not matched, then check whether the item is less than the root element, if it

is smaller than the root element, then move to the left subtree.

4. If it is larger than the root element, then move to the right subtree.

5. Repeat the above procedure recursively until the match is found.

6. If the element is not found or not present in the tree,then return NULL.

Now, let's understand the searching in binary tree using an example. We are taking the binary

search tree formed above. Suppose we have to find node 20 from the below tree.

Step1:

Step2:

Step3:

Now, let's see the algorithm to search an element in the Binary search tree.

Algorithm to search an element in Binary search tree

1. Search(root,item)

2. Step1-if(item=root→data)or(root=NULL)

3. Return root

4. Else if(item<root→ data)

5. return Search(root→left,item)

6. else

7. return Search(root→right,item)

8. END if

9. Step2-END

Insertion in Binary Search tree

A new key in BST is always inserted at the leaf.

To insert an element in BST, we have to start searching from the root node; if the node to be

inserted is less than the root node, then search for an empty location in the left subtree. Else,

search for the empty location in the right subtree and insert the data.

Now, let's see the process of inserting a node into BST using an example.

DeletioninBinarySearchtree

In a binary search tree, we must delete a node from the tree by keeping in mind that the property

of BST is not violated. To delete a node from BST, there are three possible situations occur -

o The node to be deleted is the leaf node,or,

o The node to be deleted has only one child ,and,

o The node to be deleted has two children

1. When the node to be deleted is the leaf node

o It is the simplest case to delete a node in BST. Here, we have to replace the leaf node

with NULL and simply free the allocated space.

o In below image, suppose we have to delete node 90,as the node to be deleted is a leaf

node, so it will be replaced with NULL, and the allocated space will free.

2. When the node to be deleted has only one child

In this case, we have to replace the target node with its child, and then delete the child node. It

means that after replacing the target node with its child node, the child node will now contain the

value to be deleted. So, we simply have to replace the child node with NULL and free up the

allocated space.

In the below image, suppose we have to delete the node 79, as the node to be deleted has only

one child, so it will be replaced with its child 55.

So, there placed node79 will now be a leaf node that can be easily deleted.

3. When the node to be deleted has two children

If the node has 2 children ,the strategy is to place the data of this node with the smallest data of

the right subtree and recursively delete that node.

In the below image, suppose we have to delete node 45 that is the root node, as the node to be

deleted has two children, so it will be replaced with its inorder successor. Now, node 45 will beat

the leaf of the tree so that it can be deleted easily.

 54

Chapter-7

GRAPH

A graph is a non-linear kind of data structure made up of nodes or vertices and edges.

Formally, a graph is a pair of sets (V, E), where Vis the set of vertices and E is the set of edges,

connecting the pairs of vertices.

In the above Graph, the set of vertices V = {0,1,2,3,4} and the set of edges E = {01, 12, 23, 34,

04, 14, 13}.

Applications

Graphs are used to solve many real-life problems. Graphs are used to represent networks. The

networks may include paths in a city or telephone network or circuit network. Graphs are also

used in social networks like linkedIn, Facebook. For example, in Facebook, each person is

represented with a vertex(ornode). Each node is a structure and contains information like person

id, name, gender etc.

GraphTerminologies

1. Undirected: A graph in which all the edges are bi-directional.The edges do not point in a

specific direction.

 55

2. Directed Graph orDigraph: AgraphG=(V, E) with a mapping f such that everyedge maps

onto some ordered pair of vertices (Vi, Vj) is called Digraph. It is also called Directed Graph.

Ordered pair (Vi, Vj) means an edge between Vi and Vj with an arrow directed from Vi to Vj.

3. Weighted Graph:A graph that has a value associated with every edge. The values

corresponding to the edges are called weights. A value in a weighted graph can represent

quantities such as cost, distance, and time, depending on the graph. Weighted graphs are

typically used in modeling computer networks.

4. Unweighted Graph:A graph in which there is no value or weight associated with the edge.

All the graphs are unweighted by default unless there is a value associated.

 56

5. Complete Graph:A simple graph with n vertices is called a complete graph if the degree of

each vertex is n-1, that is, one vertex is attach with n-1 edges. A complete graph is also called

Full Graph.

6. Cyclic Graph: For a graph to be called acyclic graph, it should consist of at least one cycle. If

a graph has a minimum of one cycle present, it is called acyclic graph.

7. Acyclic Graph: A graph is called an acyclic graph if zero cycles are present, and an acyclic

graph is the complete opposite of a cyclic graph.

8 .Vertex:Every individual data element is called a vertex or a node.

9 .EdgeIt is a connecting link between two nodes or vertices.

10. Degree: The total number of edges connected to a vertex in a graph.

Indegree: The total number of incoming edges connected to a vertex.

Outdegree The total number of outgoing edges connected to a

vertex.

11. Self-loop: If there is an edge whose stat and end vertices are same i.e.(vi,vi)is an edge ,then it

is called self loop.

 57

12. Adjacent Nodes: Two nodes are called adjacent if they are connected through an edge.

13. Path: sequence of vertices in which each pair of successive vertices is connected by an edge

14. IsolatedVertex: A vertex with degree zero is called an isolated vertex.

Example:

Here, the vertex 'a' and vertex'b' has a no connectivity between each other and also to any other

vertices. So the degree of both the vertices 'a' and 'b' are zero. These are also called as isolated

vertices.

RepresentationofGraph

The graph can be represented as matrices.

Adjacency Matrix

Adjacency Matrix is used to represent a graph. We can represent directed as well as undirected

graphs using adjacency matrices..

If a graph has n number of vertices, then the adjacency matrix of that graph is n x n, and each

entry of the matrix represents the number of edges from one vertex to another.

Adjacency Matrix Representation for undirectedgraph

If an Undirected Graph G consists of n vertices then the adjacency matrix of a graph is n x n

matrix A = [aij] and defined by -

aij=1{if there is a path exists fromVitoVj}

aij = 0 {Otherwise}

In an undirected graph,if there is an edge exists between Vertex AandVertex B,then the vertices

can be transferred from A to B as well as B to A.

 58

The adjacency matrix of the above graph will be-

Adjacency matrix representation for a directedgraph

In a directedgraph, edges form an ordered pair. Edges represent a specific path from some vertex

A to another vertexB. Node A is called the initial node, while node B is called the terminal node.

The adjacency matrix of the above graph will be-

 59

Properties of the adjacency matrix

Some of the properties of the adjacency matrix are listed as follows:

o An adjacency matrix is a matrix that contains rows and columns used to represent a

simple labeled graph with thenumbers 0and1 in the positionof(VI, Vj),according to the

condition of whether or not the two Vi and Vjare adjacent.

o For a directed graph, if there is an edge exists between vertex ior Vi to Vertex jor Vj,

then the value of A[Vi][Vj] = 1, otherwise the value will be 0.

o For an undirected graph, if there is an edge that exists between vertex I or Vi to Vertex

j or Vj, then the value of A[Vi][Vj] = 1 and A[Vj][Vi] = 1, otherwise the value will be 0.

Chapter-8

LINKED REPRESENTATI ON OF GRAPH

Graph is a mathematical structure and finds its application in many areas, where the problem is to be

solved by computers. The problems related to graph G must be represented in computer memory using

any suitable data structure to solve the same. There are two standard ways of maintaining

(representation)a graph Ginthememory of a computer.

1. Sequential representation of a graph using adjacent(adjacencymatrix)

2. Linked representation of a graph using linkedlist(adjacencylist)

1. ADJACENCY MATRIX REPRESENTATION

The SA of a graph G=(V,E)with n vertices, is an n×n matrix. In this section let us see how a

directed graph can be represented using adjacency matrix. Considered a directed graph in Fig. 9.12

where all the vertices are numbered, (1, 2, 3, 4etc.)

The adjacency matrix A of a directed graphG=(V,E)canberepresented(inFig 9.13) with the

following conditions

Aij=1{if there is an edge from Vi to Vj or if the edge(i,j)ismemberofE.} Aij = 0 {if there is

no edge from Vi to Vj}

Wehaveseenhowadirectedgraphcanberepresentedinadjacencymatrix.Now let us discuss how an

undirected graph can be represented using adjacency matrix.

ConsideredanundirectedgraphinFig.9.14

TheadjacencymatrixAofanundirectedgraphG=(V,E)canberepresented(inFig 9.15) with the following

conditions

Aij = 1 {if there is an edge from Vi to Vj or if the edge (i, j) is member of E} Aij=0{if there

is no edge fromVitoVjor the edgei,j,is not a member of E}

To represent a weighted graph using adjacency matrix, weight of the edge (i, j) is simply stored as

the entry in Ith row and jth column of the adjacency matrix.There

Are some cases where zero canal so be the possible weight of the edge, the n we have to store some

sentinel value for non-existent edge, which can be a negative value; since the weight of the edge is

always a positive number. Consider a weighted graph, Fig. 9.16

The adjacency matrix A for a directed weighted graph G = (V, E, We) can be represented (in Fig. 9.17)

as

Aij=Wij{if there is an edge fromVi toVjthe n represent its weightWij.} Aij = – 1 { if there

is no edge from Vi to Vj}

In this representation, n2 memory location is required to represent a graph with n vertices. The

adjacency matrix is a simple way to represent a graph, but it has two disadvantages.

1. It takes n2space to represent a graph with n vertices,even for as parse graph.

2. It takesO(n2)time to solve the graph problem

2. LINKEDLIST REPRESENTATION

Inthisrepresentation(alsocalledadjacencylistrepresentation),westoreagraph as a linked structure.

First we store all the vertices of the graph in a list and then each adjacent vertices will be represented

using linked list node. Here terminal vertex of an

edgeisstoredinastructurenodeandlinkedtoacorrespondinginitialvertexinthelist. Consider a directed graph

in Fig. 9.12, it can be represented using linked list as Fig. 9.18.

Weighted graph can be represented using linkedlist by storing the corresponding weight along

with the terminal vertex of the edge. Consider a weighted graph in Fig. 9.16, it can be represented

using linked list as in Fig. 9.19.

Although the linked list representation requires very less memory as compared to the adjacency

matrix, the simplicity of adjacency matrix makes it preferable when graph are reasonably small.

TRAVERSING A GRAPH

Many application of graph requires a structured system to examine the vertices and edges of a

graph G.That is a graph traversal,which means visiting all the nodes of the graph. There are two graph

traversal methods.

(a) Breadth First Search(BFS)

(b) Depth First Search(DFS

BREADTH FIRST SEARCH

Give n an input graph G=(V,E)and as our cevertex S,from where the searching starts. The

breadth first search systematically traverse the edges of G to explore every vertex that is reachable

from S. Then we examine all the vertices neighbor to source vertexS.Then we traverse all the

neighbors of the neighbors of source vertex Sand so on.A queue is used to keep track of the progress of

traversing the neighbor nodes. BFS can be further discussed with an example. Considering the graph G

in Fig. 9.20

The linked list (or adjacency list) representation of the graph Fig. 9.20 is also shown. Suppose

the source vertex is A. Then following steps will illustrate the BFS.

Step1:Initially pushA(the source vertex)tothe queue.

Step 2: Pop (or remove) the front element A from the queue (by incrementing front = front+1)and

display it. Then push(or add)the neighboring vertices of A to the queue, (by incrementing Rear = Rear

+1) if it is not in queue.

Step3:Pop the front element B from the queue and display it.The n add the neighboring vertices of B to

the queue, if it is not in queue.

One of the neighboring element C of B is preset in the queue, So C is not added to queue.

Step 4: Remove the front element C and display it. Add the neighboring vertices of C, if it is not present

in queue.

One of the neighboring elements E of C is present in the queue. So E is not added.

Step5: Remove the front element D,and add the neighboring vertex if it is not present in queue.

Step 6: again the process is repeated (until front > rear). That is remove the front element E of the queue

and add the neighboring vertex if it is not present in queue.

SoA,B,C,D,E, F,G,His the BFS traversal of the graph in Fig.9.20

ALGORITHM

1. Input the vertices of the graph and its edgesG=(V,E)

2. Input the source vertex and assign it to the variableS.

3. Add or push the source vertex to the queue.

4. Repeat the steps5 and 6until the queue is empty(i.e.,front>rear)

5. Pop the front element of the queue and display it as visited.

6. Push the vertices,which is neighbor to just,popped element, if it is not in the

queue and displayed (i.e., not visited).

7. Exit.

(b) DEPTH FIRST SEARCH

The depthfirstsearch(DFS), as its name suggest,is to search deeper in the graph, whenever

possible.Give n an input graphG=(V,E)and as our c evertexS,from where the searching starts. First we

visit the starting node. Then we travel through each node along a path, which begins at S. That is we

visit a neighbor vertex of S and again a neighbor of a neighbor of S, and so on. The implementation of

BFS is almost same except a stack is used instead of the queue. DFS can be further discussed with an

example.Consider the graph inFig.9.20and its linkedlist representation.Suppose the source vertex is I.

The following steps will illustrate the DFS

Step1:InitiallypushIontothestack.

STACK: I

DISPLAY:

Step2:Popanddisplaythetopelement,andthenpushalltheneighborsofpopped element (i.e., I) onto the stack,

if it is not visited (or displayed or not in the stack).

STACK:G,H DISPLAY: I

Step 3: Pop and displaythe top element and then push all the neighbors of popped the element (i.e., H)

onto top of the stack, if it is not visited.

STACK: G, E DISPLAY:I,H

The popped element H has two neighbors Eand G. G is already visited, means G is either in the

stack or displayed. Here G is in the stack. So only E is pushed onto the top of the stack.

Step4: Pop and display the to p element of the stack.Push all the neighbors of the popped element on to

the stack, if it is not visited.

STACK: G, D, F DISPLAY:I,H,E

Step5: Pop and display the to p element of the stack.Push all the neighbors of the popped element onto

the stack, if it is not visited.

STACK: G, D DISPLAY:I,H,E,F

The popped element(orvertex)F has neighbor(s)H, which is already visited.

Then His displayed, and will not be pushed again on to the stack.

Step 6: The process is repeated as follows.

STACK:G

DISPLAY:I,H,E,F,D

STACK: //nowthestackisempty

DISPLAY: I, H, E, F, D, G

SoI,H,E,F,D,G is the DFS traversal of graph Fig9:2 0 from the source vertexI.

ALGORITHM

1. Input the vertices and edges of the graphG=(V,E).

2. Input the source vertex and assign it to the variableS.

3. Push the source vertex to the stack.

4. Repeat the steps 5 and 6 until the stack is empty.

5. Pop the top element of the stack and display it.

6. Push the vertices which is neighbor to just popped element, if it is not in the

queue and displayed (i.e.; not visited).

7. Exit.

 10

	GIET POLYTECHNIC
	CONTENTS
	Chapter-1
	INTRODUCTION
	DATA:
	ENTITY
	INFORMATION
	Example:

	DATATYPE
	Example:
	Data Structure=Organizeddata+AllowedOperations.

	DATASTRUCTURE OPERATIONS:
	ABSTRACT DATA TYPES
	Uses of ADT:

	ALGORITHM:
	ALGORITHM COMPLEXITY:
	Example:
	Algorithm1: Algorithm2:
	TimeComplexity
	SpaceComplexity

	TIME-SPACETRADE-OFF:

	Chapter3ARRAYS
	LINEARARRAY
	Representation of Linear Array in memory
	Operation on Array
	1. TRAVERSAL
	2. INSERTION
	3. DELETION

	Memory Representation of 2DArray
	Row-major Order
	Column-major Order
	Address Calculation of Matrix in Memory

	Pointers
	Syntax:datatype*var_name; Example:
	Pointer Example
	Output

	Chapter-4
	STACKS&QUEUES
	Condition also arise:
	Representation of Stack in memory
	Array Representation of Stack :
	Linked List Representation of Stack:
	INSERTION IN STACK (PUSH OPERATION)
	DELETION IN STACK (POP OPERATION)
	ARITHMETICEXPRESSION
	1. INFIX NOTATION
	2. PREFIX NOTATION
	3. POSTFIX NOTATION
	CONVERSIONFROM INFIXTOPOSTFIXEXPRESSION
	EVALUATION OF POSTFIX EXPRESSION
	Algorithm:

	APPLICATIONSOFSTACK:
	IMPLEMENTATION OF RECURSION

	QUEUE
	Representation Of Queue In Memory
	INSERTIONINQUEUE(Enqueue)
	DELETIONIN QUEUE(Dequeue)
	CIRCULARQUEUE
	INSERTION ALGORITHM OF CIRCULARQUEUE
	DELETION ALGORITHM OF CIRCULARQUEUE

	Chapter-5
	SINGLE LINKEDLIST
	Headerlinkedlist
	GarbageCollection

	Chapter-6
	TREE
	Application:
	BasicTreeTerminologies
	1. Node

	BinaryTree
	TypesofBinary Tree
	2. Complete Binary tree
	Binary Tree Representation in memory
	1. Sequential or Linear Representation of BinaryTree.
	2. Linked Representation of Binary Tree
	BinaryTree Traversal
	Application-
	2. PreorderTraversal-
	3. Postorder Traversal-
	Algorithm-
	Applications-
	BinarySearchtree
	Step1-Insert 45.
	Step3-Insert 79.
	Step4-Insert 90.
	Step5-Insert 10.
	Step6-Insert 55.
	Step7-Insert 12.
	Step8-Insert 20.
	Step9-Insert 50.
	Searching in Binary search tree
	Insertion in Binary Search tree
	DeletioninBinarySearchtree
	1. When the node to be deleted is the leaf node
	2. When the node to be deleted has only one child
	3. When the node to be deleted has two children

	Chapter-7
	GRAPH
	GraphTerminologies
	Adjacency Matrix
	Adjacency Matrix Representation for undirectedgraph
	Adjacency matrix representation for a directedgraph

	Chapter-8
	LINKED REPRESENTATI ON OF GRAPH
	1. ADJACENCY MATRIX REPRESENTATION
	2. LINKEDLIST REPRESENTATION
	TRAVERSING A GRAPH
	BREADTH FIRST SEARCH
	ALGORITHM
	STACK: I DISPLAY:
	STACK:G,H DISPLAY: I
	STACK: G, E DISPLAY:I,H
	STACK: G, D, F DISPLAY:I,H,E
	STACK: G, D DISPLAY:I,H,E,F
	STACK:G

	ALGORITHM (1)

